24 research outputs found

    Hybrid GRU-CNN Bilinear Parameters Initialization for Quantum Approximate Optimization Algorithm

    Full text link
    The Quantum Approximate Optimization Algorithm (QAOA), a pivotal paradigm in the realm of variational quantum algorithms (VQAs), offers promising computational advantages for tackling combinatorial optimization problems. Well-defined initial circuit parameters, responsible for preparing a parameterized quantum state encoding the solution, play a key role in optimizing QAOA. However, classical optimization techniques encounter challenges in discerning optimal parameters that align with the optimal solution. In this work, we propose a hybrid optimization approach that integrates Gated Recurrent Units (GRU), Convolutional Neural Networks (CNN), and a bilinear strategy as an innovative alternative to conventional optimizers for predicting optimal parameters of QAOA circuits. GRU serves to stochastically initialize favorable parameters for depth-1 circuits, while CNN predicts initial parameters for depth-2 circuits based on the optimized parameters of depth-1 circuits. To assess the efficacy of our approach, we conducted a comparative analysis with traditional initialization methods using QAOA on Erd\H{o}s-R\'enyi graph instances, revealing superior optimal approximation ratios. We employ the bilinear strategy to initialize QAOA circuit parameters at greater depths, with reference parameters obtained from GRU-CNN optimization. This approach allows us to forecast parameters for a depth-12 QAOA circuit, yielding a remarkable approximation ratio of 0.998 across 10 qubits, which surpasses that of the random initialization strategy and the PPN2 method at a depth of 10. The proposed hybrid GRU-CNN bilinear optimization method significantly improves the effectiveness and accuracy of parameters initialization, offering a promising iterative framework for QAOA that elevates its performance

    Dermatophagoides farinae microRNAs released to external environments via exosomes regulate inflammation-related gene expression in human bronchial epithelial cells

    Get PDF
    BackgroundDermatophagoides farinae (DFA) is an important species of house dust mites (HDMs) that causes allergic diseases. Previous studies have focused on allergens with protein components to explain the allergic effect of HDMs; however, there is little knowledge on the role of microRNAs (miRNAs) in the allergic effect of HDMs. This study aimed to unravel the new mechanism of dust mite sensitization from the perspective of cross-species transport of extracellular vesicles-encapsulated miRNAs from HDMs.MethodsSmall RNA (sRNA) sequencing was performed to detect miRNAs expression profiles from DFA, DFA-derived exosomes and DFA culture supernatants. A quantitative fluorescent real-time PCR (qPCR) assay was used to detect miRNAs expression in dust specimens. BEAS-2B cells endocytosed exosomes were modeled in vitro to detect miRNAs from DFA and the expression of related inflammatory factors. Representative dfa-miR-276-3p and dfa-novel-miR2 were transfected into BEAS-2B cells, and then differentially expressed genes (DEGs) were analyzed by RNA sequencing. Protein-protein interaction (PPI) network analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment analyses were performed on the first 300 nodes of DEGs.ResultssRNA sequencing identified 42 conserved miRNAs and 66 novel miRNAs in DFA, DFA-derived exosomes, and DFA culture supernatants. A homology analysis was performed on the top 18 conserved miRNAs with high expression levels. The presence of dust mites and miRNAs from HDMs in living environment were also validated. Following uptake of DFA-derived exosomes by BEAS-2B cells, exosomes transported miRNAs from DFA to target cells and produced pro-inflammatory effects in corresponding cells. RNA sequencing identified DEGs in dfa-miR-276-3p and dfa-novel-miR2 transfected BEAS-2B cells. GO and KEGG enrichment analyses revealed the role of exosomes with cross-species transporting of DFA miRNAs in inflammatory signaling pathways, such as JAK-STAT signaling pathway, PI3K/AKT signaling pathway and IL-6-mediated signaling pathway.ConclusionOur findings demonstrate the miRNAs expression profiles in DFA for the first time. The DFA miRNAs are delivered into living environments via exosomes, and engulfed by human bronchial epithelial cells, and cross-species regulation may contribute to inflammation-related processes

    Exosomes Derived from Dermatophagoides farinae Induce Allergic Airway Inflammation

    No full text
    ABSTRACT House dust mites (HDMs) are a major source of indoor allergens that cause airway allergic disease. Dermatophagoides farinae, a predominant species of HDMs in China, has demonstrated pathogenic role in allergic disorders. Exosomes derived from human bronchoalveolar lavage fluid have been strongly associated with allergic respiratory diseases progression. However, the pathogenic role of D. farinae-derived exosomes in allergic airway inflammation has remained unclear until now. Here, D. farinae was stirred overnight in phosphate-buffered saline, and the supernatant was used to extract exosomes by ultracentrifugation. Then, shotgun liquid chromatography-tandem mass spectrometry and small RNA sequencing were performed to identify proteins and microRNAs contained in D. farinae exosomes. Immunoblotting, Western blotting, and enzyme-linked immunosorbent assay demonstrated the specific immunoreactivity of D. farinae-specific serum IgE antibody against D. farinae exosomes, and D. farinae exosomes were found to induce allergic airway inflammation in a mouse model. In addition, D. farinae exosomes invaded 16-HBE bronchial epithelial cells and NR8383 alveolar macrophages to release the inflammation-related cytokines interleukin-33 (IL-33), thymic stromal lymphopoietin, tumor necrosis factor alpha, and IL-6, and comparative transcriptomic analysis of 16-HBE and NR8383 cells revealed that immune pathways and immune cytokines/chemokines were involved in the sensitization of D. farinae exosomes. Taken together, our data demonstrate that D. farinae exosomes are immunogenic and may induce allergic airway inflammation via bronchial epithelial cells and alveolar macrophages. IMPORTANCE Dermatophagoides farinae, a predominant species of house dust mites in China, has displayed pathogenic role in allergic disorders, and exosomes derived from human bronchoalveolar lavage fluid have been strongly associated with allergic respiratory diseases progression. However, the pathogenic role of D. farinae-derived exosomes in allergic airway inflammation has remained unclear until now. This study, for the first time, extracted exosomes from D. farinae, and sequenced their protein cargo and microRNAs using shotgun liquid chromatography-tandem mass spectrometry and small RNA sequencing. D. farinae-derived exosomes trigger allergen-specific immune responses and present satisfactory immunogenicity, as revealed by immunoblotting, Western blotting, and enzyme-linked immunosorbent assay and may induce allergic airway inflammation via bronchial epithelial cells and alveolar macrophages. Our data provide insights into the mechanisms of allergic airway inflammation caused with D. farinae-derived exosomes and the treatment of house dust mite-induced allergic airway inflammation

    Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films

    Full text link
    peer reviewedAbstract High quality Nb films were successfully prepared on both flexible polyimide (PI) and rigid Al2O3 substrates and their transport properties were systematically studied at various applied currents, external magnetic fields, and sample orientations. It is found that a curved Nb/PI film exhibits quite different superconducting transition and vortex dynamics compared to the flat Nb/Al2O3 film. For the curved Nb/PI film, smooth superconducting transitions were obtained at low currents, while unexpected cascade structures are revealed in the ρ(T) curves at high currents. We attribute this phenomenon to the gradient distribution of vortex density together with a variation of superconductivity along the curved film. In addition, reentrant superconductivity was induced in the curved Nb/PI thin film by properly choosing the measurement conditions. We attribute this effect to the vortex pinning from both in-plane vortices and out-of-plane vortices. This work reveals the complex transport properties of curved superconducting thin films, providing important insights for further theoretical investigations and practical developments of flexible superconductors

    The time and energy signals, counter plateau, energy resolution and gas gains performances of a new kind of micro-pattern gaseous detector-Micromegas

    No full text
    In present paper, a new Micromegas detector is developed, and its time and energy signals are obtained in the figure form. The rising time of fast time signal is less than 2 ns due to the very fast collection of avalanche electrons, and the rising time of the energy pulse is about 100 ns, which is corresponding to the total collecting time of the electrons and ions in the avalanche process. The counter plateau, energy resolution and the gas gains of the detector have been compared with other groups' experimental results and the Garfield simulation result
    corecore